SH2D1A blocking peptide Reference: GTX89320-PEP This gene encodes a protein that plays a major role in the bidirectional stimulation of T and B cells. This protein contains an SH2 domain and a short tail. It associates with the signaling lymphocyte-activation molecule, thereby acting as an inhibitor of this transmembrane protein by blocking the recruitment of the SH2-domain-containing signal-transduction molecule SHP-2 to its docking site. This protein can also bind to other related surface molecules that are expressed on activated T, B and NK cells, thereby modifying signal transduction pathways in these cells. Mutations in this gene cause lymphoproliferative syndrome X-linked type 1 or Duncan disease, a rare immunodeficiency characterized by extreme susceptibility to infection with Epstein-Barr virus, with symptoms including severe mononucleosis and malignant lymphoma. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 28]
Recombinant Human TGF-β3 (Animal-Free) Reference: GFH109AF-1000 Transforming Growth Factors (TGFs) are multifunctional peptides that regulate growth and differentiation in most cell types. The TGF-β family of proteins signal through serine/threonine kinase receptors. TGF-β isoforms (TGF-β1, -β 2, and -β 3) have overlapping, yet distinct biological actions in developing and adult tissues. TGF-β3 is an important factor in regulating cell adhesion and accelerating wound repair. TGF-β3 also functions during osteoblast proliferation, chemotaxis, and collagen synthesis.
Prolyl Endopeptidase blocking peptide Reference: GTX89322-PEP The protein encoded by this gene is a cytosolic prolyl endopeptidase that cleaves peptide bonds on the C-terminal side of prolyl residues within peptides that are up to approximately 3 amino acids long. Prolyl endopeptidases have been reported to be involved in the maturation and degradation of peptide hormones and neuropeptides. [provided by RefSeq, Jul 28]
Recombinant Mouse TGF-β3 Reference: GFM27-2 Transforming Growth Factors (TGFs) are multifunctional peptides that regulate growth and differentiation in most cell types. The TGF-β family of proteins signal through serine/threonine kinase receptors. TGF-β isoforms (TGF-β1, -β 2, and -β 3) have overlapping, yet distinct biological actions in developing and adult tissues. TGF-β3 is an important factor in regulating cell adhesion and accelerating wound repair. TGF-β3 also functions during osteoblast proliferation, chemotaxis, and collagen synthesis.
Prealbumin blocking peptide Reference: GTX89324-PEP This gene encodes transthyretin, one of the three prealbumins including alpha-1-antitrypsin, transthyretin and orosomucoid. Transthyretin is a carrier protein; it transports thyroid hormones in the plasma and cerebrospinal fluid, and also transports retinol (vitamin A) in the plasma. The protein consists of a tetramer of identical subunits. More than 8 different mutations in this gene have been reported; most mutations are related to amyloid deposition, affecting predominantly peripheral nerve and/or the heart, and a small portion of the gene mutations is non-amyloidogenic. The diseases caused by mutations include amyloidotic polyneuropathy, euthyroid hyperthyroxinaemia, amyloidotic vitreous opacities, cardiomyopathy, oculoleptomeningeal amyloidosis, meningocerebrovascular amyloidosis, carpal tunnel syndrome, etc. [provided by RefSeq, Jan 29]
Recombinant Mouse TGF-β3 Reference: GFM27-10 Transforming Growth Factors (TGFs) are multifunctional peptides that regulate growth and differentiation in most cell types. The TGF-β family of proteins signal through serine/threonine kinase receptors. TGF-β isoforms (TGF-β1, -β 2, and -β 3) have overlapping, yet distinct biological actions in developing and adult tissues. TGF-β3 is an important factor in regulating cell adhesion and accelerating wound repair. TGF-β3 also functions during osteoblast proliferation, chemotaxis, and collagen synthesis.
Psoriasin blocking peptide Reference: GTX89325-PEP The protein encoded by this gene is a member of the S1 family of proteins containing 2 EF-hand calcium-binding motifs. S1 proteins are localized in the cytoplasm and/or nucleus of a wide range of cells, and involved in the regulation of a number of cellular processes such as cell cycle progression and differentiation. S1 genes include at least 13 members which are located as a cluster on chromosome 1q21. This protein differs from the other S1 proteins of known structure in its lack of calcium binding ability in one EF-hand at the N-terminus. This protein is markedly over-expressed in the skin lesions of psoriatic patients, but is excluded as a candidate gene for familial psoriasis susceptibility. The exact function of this protein is not known. [provided by RefSeq, Jul 28]
Recombinant Mouse TGF-β3 Reference: GFM27-100 Transforming Growth Factors (TGFs) are multifunctional peptides that regulate growth and differentiation in most cell types. The TGF-β family of proteins signal through serine/threonine kinase receptors. TGF-β isoforms (TGF-β1, -β 2, and -β 3) have overlapping, yet distinct biological actions in developing and adult tissues. TGF-β3 is an important factor in regulating cell adhesion and accelerating wound repair. TGF-β3 also functions during osteoblast proliferation, chemotaxis, and collagen synthesis.
Moesin blocking peptide Reference: GTX89326-PEP Moesin (for membrane-organizing extension spike protein) is a member of the ERM family which includes ezrin and radixin. ERM proteins appear to function as cross-linkers between plasma membranes and actin-based cytoskeletons. Moesin is localized to filopodia and other membranous protrusions that are important for cell-cell recognition and signaling and for cell movement. [provided by RefSeq, Jul 28]
Recombinant Mouse TGF-β3 Reference: GFM27-1000 Transforming Growth Factors (TGFs) are multifunctional peptides that regulate growth and differentiation in most cell types. The TGF-β family of proteins signal through serine/threonine kinase receptors. TGF-β isoforms (TGF-β1, -β 2, and -β 3) have overlapping, yet distinct biological actions in developing and adult tissues. TGF-β3 is an important factor in regulating cell adhesion and accelerating wound repair. TGF-β3 also functions during osteoblast proliferation, chemotaxis, and collagen synthesis.
Ezrin blocking peptide Reference: GTX89327-PEP The cytoplasmic peripheral membrane protein encoded by this gene functions as a protein-tyrosine kinase substrate in microvilli. As a member of the ERM protein family, this protein serves as an intermediate between the plasma membrane and the actin cytoskeleton. This protein plays a key role in cell surface structure adhesion, migration and organization, and it has been implicated in various human cancers. A pseudogene located on chromosome 3 has been identified for this gene. Alternatively spliced variants have also been described for this gene. [provided by RefSeq, Jul 28]
Recombinant Mouse TGF-β3 (Animal-Free) Reference: GFM27AF-2 Transforming Growth Factors (TGFs) are multifunctional peptides that regulate growth and differentiation in most cell types. The TGF-β family of proteins signal through serine/threonine kinase receptors. TGF-β isoforms (TGF-β1, -β 2, and -β 3) have overlapping, yet distinct biological actions in developing and adult tissues. TGF-β3 is an important factor in regulating cell adhesion and accelerating wound repair. TGF-β3 also functions during osteoblast proliferation, chemotaxis, and collagen synthesis.