SLC24A5 blocking peptide Reference: GTX89312-PEP This gene is a member of the potassium-dependent sodium/calcium exchanger family and encodes an intracellular membrane protein with 2 large hydrophilic loops and 2 sets of multiple transmembrane-spanning segments. Sequence variation in this gene has been associated with differences in skin pigmentation. [provided by RefSeq, Jul 28]
Recombinant Human TGF-β3 Reference: GFH109-10 Transforming Growth Factors (TGFs) are multifunctional peptides that regulate growth and differentiation in most cell types. The TGF-β family of proteins signal through serine/threonine kinase receptors. TGF-β isoforms (TGF-β1, -β 2, and -β 3) have overlapping, yet distinct biological actions in developing and adult tissues. TGF-β3 is an important factor in regulating cell adhesion and accelerating wound repair. TGF-β3 also functions during osteoblast proliferation, chemotaxis, and collagen synthesis.
Importin beta 1 blocking peptide Reference: GTX89314-PEP Nucleocytoplasmic transport, a signal- and energy-dependent process, takes place through nuclear pore complexes embedded in the nuclear envelope. The import of proteins containing a nuclear localization signal (NLS) requires the NLS import receptor, a heterodimer of importin alpha and beta subunits also known as karyopherins. Importin alpha binds the NLS-containing cargo in the cytoplasm and importin beta docks the complex at the cytoplasmic side of the nuclear pore complex. In the presence of nucleoside triphosphates and the small GTP binding protein Ran, the complex moves into the nuclear pore complex and the importin subunits dissociate. Importin alpha enters the nucleoplasm with its passenger protein and importin beta remains at the pore. Interactions between importin beta and the FG repeats of nucleoporins are essential in translocation through the pore complex. The protein encoded by this gene is a member of the importin beta family. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Feb 213]
Recombinant Human TGF-β3 Reference: GFH109-100 Transforming Growth Factors (TGFs) are multifunctional peptides that regulate growth and differentiation in most cell types. The TGF-β family of proteins signal through serine/threonine kinase receptors. TGF-β isoforms (TGF-β1, -β 2, and -β 3) have overlapping, yet distinct biological actions in developing and adult tissues. TGF-β3 is an important factor in regulating cell adhesion and accelerating wound repair. TGF-β3 also functions during osteoblast proliferation, chemotaxis, and collagen synthesis.
p54nrb blocking peptide Reference: GTX89315-PEP This gene encodes an RNA-binding protein which plays various roles in the nucleus, including transcriptional regulation and RNA splicing. A rearrangement between this gene and the transcription factor E3 gene has been observed in papillary renal cell carcinoma. Alternatively spliced transcript variants have been described. Pseudogenes exist on Chromosomes 2 and 16. [provided by RefSeq, Feb 29]
Recombinant Human TGF-β3 Reference: GFH109-1000 Transforming Growth Factors (TGFs) are multifunctional peptides that regulate growth and differentiation in most cell types. The TGF-β family of proteins signal through serine/threonine kinase receptors. TGF-β isoforms (TGF-β1, -β 2, and -β 3) have overlapping, yet distinct biological actions in developing and adult tissues. TGF-β3 is an important factor in regulating cell adhesion and accelerating wound repair. TGF-β3 also functions during osteoblast proliferation, chemotaxis, and collagen synthesis.
Recombinant Human TGF-β3 (Animal-Free) Reference: GFH109AF-2 Transforming Growth Factors (TGFs) are multifunctional peptides that regulate growth and differentiation in most cell types. The TGF-β family of proteins signal through serine/threonine kinase receptors. TGF-β isoforms (TGF-β1, -β 2, and -β 3) have overlapping, yet distinct biological actions in developing and adult tissues. TGF-β3 is an important factor in regulating cell adhesion and accelerating wound repair. TGF-β3 also functions during osteoblast proliferation, chemotaxis, and collagen synthesis.
Amphiphysin blocking peptide Reference: GTX89317-PEP This gene encodes a protein associated with the cytoplasmic surface of synaptic vesicles. A subset of patients with stiff-man syndrome who were also affected by breast cancer are positive for autoantibodies against this protein. Alternate splicing of this gene results in two transcript variants encoding different isoforms. Additional splice variants have been described, but their full length sequences have not been determined. A pseudogene of this gene is found on chromosome 11.[provided by RefSeq, Nov 21]
Recombinant Human TGF-β3 (Animal-Free) Reference: GFH109AF-10 Transforming Growth Factors (TGFs) are multifunctional peptides that regulate growth and differentiation in most cell types. The TGF-β family of proteins signal through serine/threonine kinase receptors. TGF-β isoforms (TGF-β1, -β 2, and -β 3) have overlapping, yet distinct biological actions in developing and adult tissues. TGF-β3 is an important factor in regulating cell adhesion and accelerating wound repair. TGF-β3 also functions during osteoblast proliferation, chemotaxis, and collagen synthesis.
Wnt3 blocking peptide Reference: GTX89319-PEP The WNT gene family consists of structurally related genes which encode secreted signaling proteins. These proteins have been implicated in oncogenesis and in several developmental processes, including regulation of cell fate and patterning during embryogenesis. This gene is a member of the WNT gene family. It encodes a protein which shows 98% amino acid identity to mouse Wnt3 protein, and 84% to human WNT3A protein, another WNT gene product. The mouse studies show the requirement of Wnt3 in primary axis formation in the mouse. Studies of the gene expression suggest that this gene may play a key role in some cases of human breast, rectal, lung, and gastric cancer through activation of the WNT-beta-catenin-TCF signaling pathway. This gene is clustered with WNT15, another family member, in the chromosome 17q21 region. [provided by RefSeq, Jul 28]
Recombinant Human TGF-β3 (Animal-Free) Reference: GFH109AF-100 Transforming Growth Factors (TGFs) are multifunctional peptides that regulate growth and differentiation in most cell types. The TGF-β family of proteins signal through serine/threonine kinase receptors. TGF-β isoforms (TGF-β1, -β 2, and -β 3) have overlapping, yet distinct biological actions in developing and adult tissues. TGF-β3 is an important factor in regulating cell adhesion and accelerating wound repair. TGF-β3 also functions during osteoblast proliferation, chemotaxis, and collagen synthesis.