Human Factor IX protein, His tag (active) Reference: GTX01255-pro-S This gene encodes vitamin K-dependent coagulation factor IX that circulates in the blood as an inactive zymogen. This factor is converted to an active form by factor XIa, which excises the activation peptide and thus generates a heavy chain and a light chain held together by one or more disulfide bonds. The role of this activated factor IX in the blood coagulation cascade is to activate factor X to its active form through interactions with Ca+2 ions, membrane phospholipids, and factor VIII. Alterations of this gene, including point mutations, insertions and deletions, cause factor IX deficiency, which is a recessive X-linked disorder, also called hemophilia B or Christmas disease. Alternative splicing results in multiple transcript variants encoding different isoforms that may undergo similar proteolytic processing. [provided by RefSeq, Sep 215]
Human Factor IX protein, His tag (active) Reference: GTX01255-pro This gene encodes vitamin K-dependent coagulation factor IX that circulates in the blood as an inactive zymogen. This factor is converted to an active form by factor XIa, which excises the activation peptide and thus generates a heavy chain and a light chain held together by one or more disulfide bonds. The role of this activated factor IX in the blood coagulation cascade is to activate factor X to its active form through interactions with Ca+2 ions, membrane phospholipids, and factor VIII. Alterations of this gene, including point mutations, insertions and deletions, cause factor IX deficiency, which is a recessive X-linked disorder, also called hemophilia B or Christmas disease. Alternative splicing results in multiple transcript variants encoding different isoforms that may undergo similar proteolytic processing. [provided by RefSeq, Sep 215]
Human DKK1 protein, His tag (active) Reference: GTX01256-pro-S This gene encodes a member of the dickkopf family of proteins. Members of this family are secreted proteins characterized by two cysteine-rich domains that mediate protein-protein interactions. The encoded protein binds to the LRP6 co-receptor and inhibits beta-catenin-dependent Wnt signaling. This gene plays a role in embryonic development and may be important in bone formation in adults. Elevated expression of this gene has been observed in numerous human cancers and this protein may promote proliferation, invasion and growth in cancer cell lines. [provided by RefSeq, Sep 217]
Human DKK1 protein, His tag (active) Reference: GTX01256-pro This gene encodes a member of the dickkopf family of proteins. Members of this family are secreted proteins characterized by two cysteine-rich domains that mediate protein-protein interactions. The encoded protein binds to the LRP6 co-receptor and inhibits beta-catenin-dependent Wnt signaling. This gene plays a role in embryonic development and may be important in bone formation in adults. Elevated expression of this gene has been observed in numerous human cancers and this protein may promote proliferation, invasion and growth in cancer cell lines. [provided by RefSeq, Sep 217]
Human CD105 protein, human IgG1 Fc tag Reference: GTX01257-pro-S This gene encodes a homodimeric transmembrane protein which is a major glycoprotein of the vascular endothelium. This protein is a component of the transforming growth factor beta receptor complex and it binds to the beta1 and beta3 peptides with high affinity. Mutations in this gene cause hereditary hemorrhagic telangiectasia, also known as Osler-Rendu-Weber syndrome 1, an autosomal dominant multisystemic vascular dysplasia. This gene may also be involved in preeclampsia and several types of cancer. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, May 213]
Human CD105 protein, human IgG1 Fc tag Reference: GTX01257-pro This gene encodes a homodimeric transmembrane protein which is a major glycoprotein of the vascular endothelium. This protein is a component of the transforming growth factor beta receptor complex and it binds to the beta1 and beta3 peptides with high affinity. Mutations in this gene cause hereditary hemorrhagic telangiectasia, also known as Osler-Rendu-Weber syndrome 1, an autosomal dominant multisystemic vascular dysplasia. This gene may also be involved in preeclampsia and several types of cancer. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, May 213]
Human FGF21 protein, His tag (active) Reference: GTX01258-pro-S Theis gene encodes a member of the fibroblast growth factor (FGF) family. FGF family members possess broad mitogenic and cell survival activities and are involved in a variety of biological processes. This protein is a secreted endocrine factor that functions as a major metabolic regulator. The encoded protein stimulates the uptake of glucose in adipose tissue. [provided by RefSeq, Mar 216]
Human FGF21 protein, His tag (active) Reference: GTX01258-pro Theis gene encodes a member of the fibroblast growth factor (FGF) family. FGF family members possess broad mitogenic and cell survival activities and are involved in a variety of biological processes. This protein is a secreted endocrine factor that functions as a major metabolic regulator. The encoded protein stimulates the uptake of glucose in adipose tissue. [provided by RefSeq, Mar 216]
Human Follistatin protein, human IgG1 Fc tag (active) Reference: GTX01259-pro-S Follistatin is a single-chain gonadal protein that specifically inhibits follicle-stimulating hormone release. The single FST gene encodes two isoforms, FST317 and FST344 containing 317 and 344 amino acids respectively, resulting from alternative splicing of the precursor mRNA. In a study in which 37 candidate genes were tested for linkage and association with polycystic ovary syndrome (PCOS) or hyperandrogenemia in 15 families, evidence was found for linkage between PCOS and follistatin. [provided by RefSeq, Jul 28]
Human Follistatin protein, human IgG1 Fc tag (active) Reference: GTX01259-pro Follistatin is a single-chain gonadal protein that specifically inhibits follicle-stimulating hormone release. The single FST gene encodes two isoforms, FST317 and FST344 containing 317 and 344 amino acids respectively, resulting from alternative splicing of the precursor mRNA. In a study in which 37 candidate genes were tested for linkage and association with polycystic ovary syndrome (PCOS) or hyperandrogenemia in 15 families, evidence was found for linkage between PCOS and follistatin. [provided by RefSeq, Jul 28]
Human Growth Hormone protein, His tag (active) Reference: GTX01260-pro-S The protein encoded by this gene is a member of the somatotropin/prolactin family of hormones which play an important role in growth control. The gene, along with four other related genes, is located at the growth hormone locus on chromosome 17 where they are interspersed in the same transcriptional orientation; an arrangement which is thought to have evolved by a series of gene duplications. The five genes share a remarkably high degree of sequence identity. Alternative splicing generates additional isoforms of each of the five growth hormones, leading to further diversity and potential for specialization. This particular family member is expressed in the pituitary but not in placental tissue as is the case for the other four genes in the growth hormone locus. Mutations in or deletions of the gene lead to growth hormone deficiency and short stature. [provided by RefSeq, Jul 28]
Human Growth Hormone protein, His tag (active) Reference: GTX01260-pro The protein encoded by this gene is a member of the somatotropin/prolactin family of hormones which play an important role in growth control. The gene, along with four other related genes, is located at the growth hormone locus on chromosome 17 where they are interspersed in the same transcriptional orientation; an arrangement which is thought to have evolved by a series of gene duplications. The five genes share a remarkably high degree of sequence identity. Alternative splicing generates additional isoforms of each of the five growth hormones, leading to further diversity and potential for specialization. This particular family member is expressed in the pituitary but not in placental tissue as is the case for the other four genes in the growth hormone locus. Mutations in or deletions of the gene lead to growth hormone deficiency and short stature. [provided by RefSeq, Jul 28]