KCNQ4 blocking peptide Reference: GTX88722-PEP The protein encoded by this gene forms a potassium channel that is thought to play a critical role in the regulation of neuronal excitability, particularly in sensory cells of the cochlea. The current generated by this channel is inhibited by M1 muscarinic acetylcholine receptors and activated by retigabine, a novel anti-convulsant drug. The encoded protein can form a homomultimeric potassium channel or possibly a heteromultimeric channel in association with the protein encoded by the KCNQ3 gene. Defects in this gene are a cause of nonsyndromic sensorineural deafness type 2 (DFNA2), an autosomal dominant form of progressive hearing loss. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 28]
Recombinant Human LIF Reference: GFH200-1000 Leukemia Inhibitory Factor (LIF) is a member of the interleukin-6 (IL-6) family that is made by a variety of adult and embryonic tissues. LIF signals through the glycoprotein 130 (gp130)/LIF receptor (LIFR) heterodimer to activate STAT3 and MAPK signaling. LIF functions during hematopoietic differentiation, neuronal cell differentiation, kidney development, and inflammatory processes. Human LIF may also be an important factor during human embryonic stem cell (hESC) self-renewal, pluripotency, and embryonic implantation.
Recombinant Human LIF (Animal-Free) Reference: GFH47AF-5 Leukemia Inhibitory Factor (LIF) is a member of the interleukin-6 (IL-6) family that is made by a variety of adult and embryonic tissues. LIF signals through the glycoprotein 130 (gp130)/LIF receptor (LIFR) heterodimer to activate STAT3 and MAPK signaling. LIF functions during hematopoietic differentiation, neuronal cell differentiation, kidney development, and inflammatory processes. Human LIF may also be an important factor during human embryonic stem cell (hESC) self-renewal, pluripotency, and embryonic implantation.
Recombinant Human LIF (Animal-Free) Reference: GFH47AF-25 Leukemia Inhibitory Factor (LIF) is a member of the interleukin-6 (IL-6) family that is made by a variety of adult and embryonic tissues. LIF signals through the glycoprotein 130 (gp130)/LIF receptor (LIFR) heterodimer to activate STAT3 and MAPK signaling. LIF functions during hematopoietic differentiation, neuronal cell differentiation, kidney development, and inflammatory processes. Human LIF may also be an important factor during human embryonic stem cell (hESC) self-renewal, pluripotency, and embryonic implantation.
SEL1L blocking peptide Reference: GTX88726-PEP The protein encoded by this gene is part of a protein complex required for the retrotranslocation or dislocation of misfolded proteins from the endoplasmic reticulum lumen to the cytosol, where they are degraded by the proteasome in a ubiquitin-dependent manner. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Oct 211]
Recombinant Human LIF (Animal-Free) Reference: GFH47AF-100 Leukemia Inhibitory Factor (LIF) is a member of the interleukin-6 (IL-6) family that is made by a variety of adult and embryonic tissues. LIF signals through the glycoprotein 130 (gp130)/LIF receptor (LIFR) heterodimer to activate STAT3 and MAPK signaling. LIF functions during hematopoietic differentiation, neuronal cell differentiation, kidney development, and inflammatory processes. Human LIF may also be an important factor during human embryonic stem cell (hESC) self-renewal, pluripotency, and embryonic implantation.
XBP1 blocking peptide Reference: GTX88727-PEP This gene encodes a transcription factor that regulates MHC class II genes by binding to a promoter element referred to as an X box. This gene product is a bZIP protein, which was also identified as a cellular transcription factor that binds to an enhancer in the promoter of the T cell leukemia virus type 1 promoter. It may increase expression of viral proteins by acting as the DNA binding partner of a viral transactivator. It has been found that upon accumulation of unfolded proteins in the endoplasmic reticulum (ER), the mRNA of this gene is processed to an active form by an unconventional splicing mechanism that is mediated by the endonuclease inositol-requiring enzyme 1 (IRE1). The resulting loss of 26 nt from the spliced mRNA causes a frame-shift and an isoform XBP1(S), which is the functionally active transcription factor. The isoform encoded by the unspliced mRNA, XBP1(U), is constitutively expressed, and thought to function as a negative feedback regulator of XBP1(S), which shu
Recombinant Human LIF (Animal-Free) Reference: GFH47AF-1000 Leukemia Inhibitory Factor (LIF) is a member of the interleukin-6 (IL-6) family that is made by a variety of adult and embryonic tissues. LIF signals through the glycoprotein 130 (gp130)/LIF receptor (LIFR) heterodimer to activate STAT3 and MAPK signaling. LIF functions during hematopoietic differentiation, neuronal cell differentiation, kidney development, and inflammatory processes. Human LIF may also be an important factor during human embryonic stem cell (hESC) self-renewal, pluripotency, and embryonic implantation.
Recombinant Mouse LIF Reference: GFM200-5 Leukemia Inhibitory Factor (LIF) is a member of the interleukin-6 (IL-6) family that is made by a variety of adult and embryonic tissues. LIF signals through the glycoprotein 130 (gp130)/LIF receptor (LIFR) heterodimer to activate STAT3 and MAPK signaling. LIF functions during hematopoietic differentiation, neuronal cell differentiation, kidney development, and inflammatory processes. The application of mouse LIF to long-term culture systems promotes mouse embryonic stem cell (ESC) self-renewal and pluripotency, similar to the functional activity of FGF-2 in human ESC cell culture systems.