Recombinant Human E3 ubiquitin-protein ligase TRIP12(TRIP12),partial Reference: CSB-BP617924HU_20 E3 ubiquitin-protein ligase involved in ubiquitin fusion degradation (UFD) pathway and regulation of DNA repair. Part of the ubiquitin fusion degradation (UFD) pathway, a process that mediates ubiquitination of protein at their N-terminus, regardeless of the presence of lysine residues in target proteins. In normal cells, mediates ubiquitination and degradation of isoform p19ARF/ARF of CDKN2A, a lysine-less tumor suppressor required for p53/TP53 activation under oncogenic stress. In cancer cells, however, isoform p19ARF/ARF and TRIP12 are located in different cell compartments, preventing isoform p19ARF/ARF ubiquitination and degradation. Does not mediate ubiquitination of isoform p16-INK4a of CDKN2A. Also catalyzes ubiquitination of NAE1 and SMARCE1, leading to their degradation. Ubiquitination and degradation of target proteins is regulated by interaction with proteins such as MYC, TRADD or SMARCC1, which disrupt the interaction between TRIP12 and target proteins. Acts as a key regulator of DNA damage response by acting as a suppressor of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites, thereby acting as a guard against excessive spreading of ubiquitinated chromatin at damaged chromosomes.
Recombinant Human Receptor-interacting serine/threonine-protein kinase... Reference: CSB-BP618785HU2_500 Serine-threonine kinase which transduces inflammatory and cell-death signals (programmed necrosis) following death receptors ligation, activation of pathogen recognition receptors (PRRs), and DNA damage. Upon activation of TNFR1 by the TNF-alpha family cytokines, TRADD and TRAF2 are recruited to the receptor. Phosphorylates DAB2IP at 'Ser-728' in a TNF-alpha-dependent manner, and thereby activates the MAP3K5-JNK apoptotic cascade. Ubiquitination by TRAF2 via 'Lys-63'-link chains acts as a critical enhancer of communication with downstream signal transducers in the mitogen-activated protein kinase pathway and the NF-kappa-B pathway, which in turn mediate downstream events including the activation of genes encoding inflammatory molecules. Polyubiquitinated protein binds to IKBKG/NEMO, the regulatory subunit of the IKK complex, a critical event for NF-kappa-B activation. Interaction with other cellular RHIM-containing adapters initiates gene activation and cell death. RIPK1 and RIPK3 association, in particular, forms a necrosis-inducing complex.
Recombinant Human Receptor-interacting serine/threonine-protein kinase... Reference: CSB-BP618785HU2_100 Serine-threonine kinase which transduces inflammatory and cell-death signals (programmed necrosis) following death receptors ligation, activation of pathogen recognition receptors (PRRs), and DNA damage. Upon activation of TNFR1 by the TNF-alpha family cytokines, TRADD and TRAF2 are recruited to the receptor. Phosphorylates DAB2IP at 'Ser-728' in a TNF-alpha-dependent manner, and thereby activates the MAP3K5-JNK apoptotic cascade. Ubiquitination by TRAF2 via 'Lys-63'-link chains acts as a critical enhancer of communication with downstream signal transducers in the mitogen-activated protein kinase pathway and the NF-kappa-B pathway, which in turn mediate downstream events including the activation of genes encoding inflammatory molecules. Polyubiquitinated protein binds to IKBKG/NEMO, the regulatory subunit of the IKK complex, a critical event for NF-kappa-B activation. Interaction with other cellular RHIM-containing adapters initiates gene activation and cell death. RIPK1 and RIPK3 association, in particular, forms a necrosis-inducing complex.
Recombinant Human Receptor-interacting serine/threonine-protein kinase... Reference: CSB-BP618785HU2_20 Serine-threonine kinase which transduces inflammatory and cell-death signals (programmed necrosis) following death receptors ligation, activation of pathogen recognition receptors (PRRs), and DNA damage. Upon activation of TNFR1 by the TNF-alpha family cytokines, TRADD and TRAF2 are recruited to the receptor. Phosphorylates DAB2IP at 'Ser-728' in a TNF-alpha-dependent manner, and thereby activates the MAP3K5-JNK apoptotic cascade. Ubiquitination by TRAF2 via 'Lys-63'-link chains acts as a critical enhancer of communication with downstream signal transducers in the mitogen-activated protein kinase pathway and the NF-kappa-B pathway, which in turn mediate downstream events including the activation of genes encoding inflammatory molecules. Polyubiquitinated protein binds to IKBKG/NEMO, the regulatory subunit of the IKK complex, a critical event for NF-kappa-B activation. Interaction with other cellular RHIM-containing adapters initiates gene activation and cell death. RIPK1 and RIPK3 association, in particular, forms a necrosis-inducing complex.
Recombinant Human Deoxyribonuclease gamma(DNASE1L3) Reference: CSB-BP621686HU_500 Has DNA hydrolytic activity. Is capable of both single- and double-stranded DNA cleavage, producing DNA fragments with 3'-OH ends. Can cleave chromatin to nucleosomal units and cleaves nucleosomal and liposome-coated DNA. Acts in internucleosomal DNA fragmentation during apoptosis and necrosis. The role in apoptosis includes myogenic and neuronal differentiation, and BCR-mediated clonal deletion of self-reactive B cells. Is active on chromatin in apoptotic cell-derived membrane-coated microparticles and thus suppresses anti-DNA autoimmunity. Together with DNASE1, plays a key role in degrading neutrophil extracellular traps. NETs are mainly composed of DNA fibers and are released by neutrophils to bind pathogens during inflammation. Degradation of intravascular NETs by DNASE1 and DNASE1L3 is required to prevent formation of clots that obstruct blood vessels and cause organ damage following inflammation.
Recombinant Human Deoxyribonuclease gamma(DNASE1L3) Reference: CSB-BP621686HU_100 Has DNA hydrolytic activity. Is capable of both single- and double-stranded DNA cleavage, producing DNA fragments with 3'-OH ends. Can cleave chromatin to nucleosomal units and cleaves nucleosomal and liposome-coated DNA. Acts in internucleosomal DNA fragmentation during apoptosis and necrosis. The role in apoptosis includes myogenic and neuronal differentiation, and BCR-mediated clonal deletion of self-reactive B cells. Is active on chromatin in apoptotic cell-derived membrane-coated microparticles and thus suppresses anti-DNA autoimmunity. Together with DNASE1, plays a key role in degrading neutrophil extracellular traps. NETs are mainly composed of DNA fibers and are released by neutrophils to bind pathogens during inflammation. Degradation of intravascular NETs by DNASE1 and DNASE1L3 is required to prevent formation of clots that obstruct blood vessels and cause organ damage following inflammation.
Recombinant Human Deoxyribonuclease gamma(DNASE1L3) Reference: CSB-BP621686HU_20 Has DNA hydrolytic activity. Is capable of both single- and double-stranded DNA cleavage, producing DNA fragments with 3'-OH ends. Can cleave chromatin to nucleosomal units and cleaves nucleosomal and liposome-coated DNA. Acts in internucleosomal DNA fragmentation during apoptosis and necrosis. The role in apoptosis includes myogenic and neuronal differentiation, and BCR-mediated clonal deletion of self-reactive B cells. Is active on chromatin in apoptotic cell-derived membrane-coated microparticles and thus suppresses anti-DNA autoimmunity. Together with DNASE1, plays a key role in degrading neutrophil extracellular traps. NETs are mainly composed of DNA fibers and are released by neutrophils to bind pathogens during inflammation. Degradation of intravascular NETs by DNASE1 and DNASE1L3 is required to prevent formation of clots that obstruct blood vessels and cause organ damage following inflammation.
Recombinant Human Deoxyribonuclease gamma(DNASE1L3) Reference: CSB-BP621686HUb1_500 Has DNA hydrolytic activity. Is capable of both single- and double-stranded DNA cleavage, producing DNA fragments with 3'-OH ends . Can cleave chromatin to nucleosomal units and cleaves nucleosomal and liposome-coated DNA . Acts in internucleosomal DNA fragmentation during apoptosis and necrosis . The role in apoptosis includes myogenic and neuronal differentiation, and BCR-mediated clonal deletion of self-reactive B cells . Is active on chromatin in apoptotic cell-derived membrane-coated microparticles and thus suppresses anti-DNA autoimmunity . Together with DNASE1, plays a key role in degrading neutrophil extracellular traps. NETs are mainly composed of DNA fibers and are released by neutrophils to bind pathogens during inflammation . Degradation of intravascular NETs by DNASE1 and DNASE1L3 is required to prevent formation of clots that obstruct blood vessels and cause organ damage following inflammation.
Recombinant Human Deoxyribonuclease gamma(DNASE1L3) Reference: CSB-BP621686HUb1_100 Has DNA hydrolytic activity. Is capable of both single- and double-stranded DNA cleavage, producing DNA fragments with 3'-OH ends . Can cleave chromatin to nucleosomal units and cleaves nucleosomal and liposome-coated DNA . Acts in internucleosomal DNA fragmentation during apoptosis and necrosis . The role in apoptosis includes myogenic and neuronal differentiation, and BCR-mediated clonal deletion of self-reactive B cells . Is active on chromatin in apoptotic cell-derived membrane-coated microparticles and thus suppresses anti-DNA autoimmunity . Together with DNASE1, plays a key role in degrading neutrophil extracellular traps. NETs are mainly composed of DNA fibers and are released by neutrophils to bind pathogens during inflammation . Degradation of intravascular NETs by DNASE1 and DNASE1L3 is required to prevent formation of clots that obstruct blood vessels and cause organ damage following inflammation.