AKAP3 blocking peptide Reference: GTX19046-PEP The A-kinase anchor proteins (AKAPs) are a group of structurally diverse proteins, which have the common function of binding to the regulatory subunit of protein kinase A (PKA) and confining the holoenzyme to discrete locations within the cell. This gene encodes a member of the AKAP family, and is expressed in testis only. The encoded protein contains an RII-binding domain, and is predicted to participate in protein-protein interactions with the R-subunit of the PKA. This protein is localized to the ribs of the fibrous sheath in the principal piece of the sperm tail. It may function as a regulator of both motility- and head-associated functions such as capacitation and the acrosome reaction. [provided by RefSeq, Jul 28]
HPS3 blocking peptide Reference: GTX19047-PEP This gene encodes a protein containing a potential clathrin-binding motif, consensus dileucine signals, and tyrosine-based sorting signals for targeting to vesicles of lysosomal lineage. The encoded protein may play a role in organelle biogenesis associated with melanosomes, platelet dense granules, and lysosomes. Mutations in this gene are associated with Hermansky-Pudlak syndrome type 3. Alternate splice variants exist, but their full length sequence has not been determined. [provided by RefSeq, Jul 28]
Androgen Receptor blocking peptide Reference: GTX19066-PEP The androgen receptor gene is more than 9 kb long and codes for a protein that has 3 major functional domains: the N-terminal domain, DNA-binding domain, and androgen-binding domain. The protein functions as a steroid-hormone activated transcription factor. Upon binding the hormone ligand, the receptor dissociates from accessory proteins, translocates into the nucleus, dimerizes, and then stimulates transcription of androgen responsive genes. This gene contains 2 polymorphic trinucleotide repeat segments that encode polyglutamine and polyglycine tracts in the N-terminal transactivation domain of its protein. Expansion of the polyglutamine tract causes spinal bulbar muscular atrophy (Kennedy disease). Mutations in this gene are also associated with complete androgen insensitivity (CAIS). Two alternatively spliced variants encoding distinct isoforms have been described. [provided by RefSeq, Jul 28]
TLR3 blocking peptide Reference: GTX20260-PEP The protein encoded by this gene is a member of the Toll-like receptor (TLR) family which plays a fundamental role in pathogen recognition and activation of innate immunity. TLRs are highly conserved from Drosophila to humans and share structural and functional similarities. They recognize pathogen-associated molecular patterns (PAMPs) that are expressed on infectious agents, and mediate the production of cytokines necessary for the development of effective immunity. The various TLRs exhibit different patterns of expression. This receptor is most abundantly expressed in placenta and pancreas, and is restricted to the dendritic subpopulation of the leukocytes. It recognizes dsRNA associated with viral infection, and induces the activation of NF-kappaB and the production of type I interferons. It may thus play a role in host defense against viruses. Use of alternative polyadenylation sites to generate different length transcripts has been noted for this gene. [provided by RefSeq, Jul 2
TRPM7 blocking peptide Reference: GTX20729-PEP The protein encoded by this gene is both an ion channel and a serine/threonine protein kinase. The kinase activity is essential for the ion channel function, which serves to increase intracellular calcium levels and to help regulate magnesium ion homeostasis. Defects in this gene are a cause of amyotrophic lateral sclerosis-parkinsonism/dementia complex of Guam.[provided by RefSeq, May 21]